Thermal stability of G-rich anti-parallel DNA triplexes upon insertion of LNA and α-L-LNA.

نویسندگان

  • Tamer R Kosbar
  • Mamdouh A Sofan
  • Laila Abou-Zeid
  • Erik B Pedersen
چکیده

G-rich anti-parallel DNA triplexes were modified with LNA or α-L-LNA in their Watson-Crick and TFO strands. The triplexes were formed by targeting a pyrimidine strand to a putative hairpin formed by Hoogsteen base pairing in order to use the UV melting method to evaluate the stability of the triplexes. Their thermal stability was reduced when the TFO strand was modified with LNA or α-L-LNA. The same trend was observed when the TFO strand and the purine Watson-Crick strand both were modified with LNA. When all triad components were modified with α-L-LNA and LNA in the middle of the triplex, the thermal melting was increased. When the pyrimidine sequence was modified with a single insertion of LNA or α-L-LNA the ΔTm increased. Moreover, increasing the number of α-L-LNA in the pyrimidine target sequence to six insertions, leads to a high increase in the thermal stability. The conformational S-type structure of α-L-LNA in anti-parallel triplexes is preferable for triplex stability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluorescent intercalator displacement replacement (FIDR) assay: determination of relative thermodynamic and kinetic parameters in triplex formation—a case study using triplex-forming LNAs

Triplex forming oligonucleotides (TFOs) are the most commonly used approach for site-specific targeting of double stranded DNA (dsDNA). Important parameters describing triplex formation include equilibrium binding constants (K(eq)) and association/dissociation rate constants (k(on) and k(off)). The 'fluorescent intercalator displacement replacement' (FIDR) assay is introduced herein as an opera...

متن کامل

C5-Alkynyl-Functionalized α-L-LNA: Synthesis, Thermal Denaturation Experiments and Enzymatic Stability

Major efforts are currently being devoted to improving the binding affinity, target specificity, and enzymatic stability of oligonucleotides used for nucleic acid targeting applications in molecular biology, biotechnology, and medicinal chemistry. One of the most popular strategies toward this end has been to introduce additional modifications to the sugar ring of affinity-inducing conformation...

متن کامل

Expanding the design horizon of antisense oligonucleotides with alpha-L-LNA.

Oligonucleotides containing Locked Nucleic Acids (LNA) to various extents and at various positions were evaluated for antisense activity, RNase H recruitment, nuclease stability and thermal affinity. In this work, two different diastereoisomers of LNA were studied: the beta-D-LNA and the alpha-L-LNA (abbreviated as beta-D-LNA and alpha-L-LNA). Our findings show that the best antisense activity ...

متن کامل

Transcription factor decoy oligonucleotides modified with locked nucleic acids: an in vitro study to reconcile biostability with binding affinity.

Double-stranded oligonucleotides (ODNs) containing the consensus binding sequence of a transcription factor provide a rationally designed tool to manipulate gene expression at the transcriptional level by the decoy approach. However, modifications introduced into oligonucleotides to increase stability quite often do not guarantee that transcription factor affinity and/or specificity of recognit...

متن کامل

Enzymatic synthesis of DNA strands containing α-L-LNA (α-L-configured locked nucleic acid) thymine nucleotides

We describe the first enzymatic incorporation of an α-L-LNA nucleotide into an oligonucleotide. It was found that the 5'-triphosphate of α-L-LNA is a substrate for the DNA polymerases KOD, 9°N(m), Phusion and HIV RT. Three dispersed α-L-LNA thymine nucleotides can be incorporated into DNA strands by all four polymerases, but they were unable to perform consecutive incorporations of α-L-LNA nucl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 13 18  شماره 

صفحات  -

تاریخ انتشار 2015